

Developing Executable Specifications for Networking Smart Transducers to Bluetooth

Steven B. Bibyk
Information Electronics
The Ohio State University
bibyk.1@osu.edu

Problem Statement

- Networking smart transducers wirelessly is attractive
- For small-span networks, using existing wireless technology is simpler, quicker and inexpensive
- Challenge is to design a network
 infrastructure according to voluminous,
 complicated standards and new
 commercial technology

Wireless Sensor Standards

- Combining Sensor Standards with Wireless Standards is error prone. Key requirements are nebulous --- battery life?
- Need to be able to exercise & forecast how the specifications will play out:
 -System Level Definition Language www.sldl.org (get white paper)
- Hardware Description Language (VHDL)

NetEnabled Overview

- Connecting Devices to:
 - Networks
 - Data centers
 - Desktops
- Using:
 - Serial, Ethernet, RF, TCP/IP, cellular, CDPD, satellite, pager
- Need:
 - RF technologies supporting:
 - 4+ years for hourly readings using only 3.6V, 5000mAhr battery
 - Variable transmissions power and distance
 - Fast sync times and short protocol negotiations
 - Application: Class I, Div I environments

MyTankLevels.com

ASIC+

- Electronics Design Business
- Specialty in Mixed Signal ASIC tapeouts.
- RF CMOS chip design and delivery.
- Embedded Systems and Firmware.
- Strong Methodology in using Hardware Description Languages - mainly for digital systems but also for Analog
- IEEE 1076 (1987, '93, '99) VHDL-AMS

Past Designs and Customers

- System (SoC)
- RF Sensor Codec
- Satellite Control
- RF ID Tag
- UWB

- contact:
- Todd James

IEEE 1451.1 Standard

Background

IEEE 1451.1 Client-Server Network Model

- Tightly coupled, point-to-point model
- NetInf translates IEEE 1451 datums to network specific format

IEEE 1451 Client-Server Model

Problem Statement

IEEE 1451 Communication on Bluetooth

Problem Statement

VHDL Design of Interface Entity

```
ENTITY interface IS
PORT(
  client request: IN BIT;
  client abort: IN BIT;
  serverid: IN UInteger8;
  server operation: IN INTEGER;
  server_input_args: IN integer_array;
  received_pkt : IN BIT;
  connect_success_pkt : IN byte_array(0 TO 6);
  get_success_pkt : IN byte_array(0 TO payload_packet_length);
  success_pkt : IN byte_array(0 TO 2);
  client_ack : OUT BIT;
  server_output_args: OUT integer_array;
  portcode: OUT UInteger8;
  performcode: OUT UInteger8;
  majorcode: OUT UInteger8;
  minorcode: OUT UInteger8;
  connect_pkt : OUT byte_array(0 TO 10);
  put_pkt : OUT byte_array(0 TO payload_packet_length);
  get_pkt : OUT byte_array(0 TO 2);
  disconnect_pkt : OUT byte_array(0 TO 2);
  abort_pkt : OUT byte_array(0 TO 2);
  session state : OUT state);
END interface;
```


Example VHDL Simulation

Methodology

- Design the requirements of a network infrastructure.
 - Detailed study of IEEE 1451 standard
 - Evaluation of existing wireless technology examination of Bluetooth
 - Detailed study of a session protocol, OBEX
 - How should IEEE 1451 transducers communicate on OBEX?
- Develop a VHDL software model of system.
 - Behavioral description of client-side functionality.
 - Simulations

Example of a Smart Transducer Network

- Remotely monitored UAV (Unmanned Aerial Vehicle)
- Applications
 - Military surveillance and law enforcement
 - Environment monitoring and pollution control
 - Media coverage

Background

Example of a Smart Transducer Network

Wireless Flying Sensor Platform

In the lab and then at the videoconference.

User Interface

Bluetooth Network Architecture

Bluetooth Protocol Stack

Background

Protocol for interfacing Bluetooth with IEEE 1451

- IEEE 1451 Client nodes "Execute" the "Perform" operation on Server nodes
- Session-level protocol required for client server communication
- Two options
 - TCP/IP Large overheads
 - OBEX Light version of HTTP
- OBEX is the chosen alternative

OBEX Protocol

- Primarily developed by IrDA and adopted by Bluetooth for interoperability
- Example applications are for short-range business card exchange or synchronization
- Can operate on both RFCOMM as well as TCP/IP as transport
- Defined by
 - OBEX Object Model
 - OBEX Session Protocol

IEEE 1451 Communication on Bluetooth

Design

OBEX Session Protocol for Smart Transducers

Test Bench for Design

Simulates
signals for
providing
Client requests
and receiving
Server response
with error codes

Simulates signals for providing server responses in OBEX format

Design

VHDL Design of Interface Entity

```
ENTITY interface IS
PORT(
  client request: IN BIT;
  client abort: IN BIT;
  serverid: IN UInteger8;
  server operation: IN INTEGER;
  server_input_args: IN integer_array;
  received_pkt : IN BIT;
  connect_success_pkt : IN byte_array(0 TO 6);
  get_success_pkt : IN byte_array(0 TO payload_packet_length);
  success_pkt : IN byte_array(0 TO 2);
  client_ack : OUT BIT;
  server_output_args: OUT integer_array;
  portcode: OUT UInteger8;
  performcode: OUT UInteger8;
  majorcode: OUT UInteger8;
  minorcode: OUT UInteger8;
  connect_pkt : OUT byte_array(0 TO 10);
  put_pkt : OUT byte_array(0 TO payload_packet_length);
  get_pkt : OUT byte_array(0 TO 2);
  disconnect_pkt : OUT byte_array(0 TO 2);
  abort_pkt : OUT byte_array(0 TO 2);
  session_state : OUT state);
END interface;
```


VHDL Design of OBEX Session

```
ENTITY obex session IS
 PORT(check: IN BIT; -- clock for session protocol
    client abort: IN BIT; -- client node aborts operation
    server id: IN UInteger8;
    obex_body_object : IN obex_body;
    obex_send : IN BIT;
    obex receive: IN BIT;
    connect success pkt: IN byte array(0 TO 6); -- success to connect
    get_success_pkt : IN byte_array(0 TO payload_packet_length); --for output
    success_pkt : IN byte_array(0 TO 2); -- success to put, disconnect, abort
    obex result object: OUT obex result;
    session_state : OUT state; -- state of OBEX session communication
    connect_pkt : OUT byte_array(0 TO 10); -- start obex session with connect
    put pkt : OUT byte array(0 TO payload packet length); -- put obex body
    get_pkt : OUT byte_array(0 TO 2); -- get results from server
    disconnect_pkt : OUT byte_array(0 TO 2); -- end session
    abort pkt: OUT byte_array(0 TO 2); -- stop operation in the middle of a session
    timeout_error : OUT BIT -- indicate session has timed out
END obex session;
```


Client-Server VHDL Simulation

Server Responds with error

Client Abort

Conclusions

- VHDL descriptions enables an implementation-oriented investigation of wireless sensor specifications.
- Easier to assess the feasibility and "cost" of various features by "what if" test bench scenarios.
- Easier to "visualize" complex behavior and catch potential problems.
- Prototyping for iterative specifications.

lectronica

